banner



How To Read Data From A File And Save It As An Array

How to read a numerical data or file in Python with numpy?

View Discussion

Improve Commodity

Save Article

Similar Article

Prerequisites: Numpy

NumPy is a full general-purpose assortment-processing package. Information technology provides a high-operation multidimensional array object and tools for working with these arrays. This article depicts how numeric data can be read from a file using Numpy.

Numerical data can be present in different formats of file :

  • The data can be saved in a txt file where each line has a new data betoken.
  • The information tin can be stored in a CSV(comma separated values) file.
  • The data tin can be likewise stored in TSV(tab separated values) file.

There are multiple ways of storing information in files and the in a higher place ones are some of the most used formats for storing numerical information. To attain our required functionality numpy's loadtxt() part volition be used.

Syntax: numpy.loadtxt(fname, dtype='bladder', comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0)

Parameters:
fname : File, filename, or generator to read. If the filename extension is .gz or .bz2, the file is first decompressed. Note that generators should return byte strings for Python 3k.
dtype : Data-type of the resulting assortment; default: bladder. If this is a structured data-blazon, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array.
delimiter : The string used to separate values. By default, this is any whitespace.
converters : A dictionary mapping column number to a function that will catechumen that column to a float. E.yard., if column 0 is a appointment string: converters = {0: datestr2num}. Default: None.
skiprows : Skip the first skiprows lines; default: 0.

Returns: ndarray

Approach

  • Import module
  • Load file
  • Read numeric information
  • Print information retrieved.

Given beneath are some implementation for various file formats:

Link to download data files used :

  • Link1 : gfg_example1.txt
  • Link2 : gfg_example2.csv
  • Link3 : gfg_example3.tsv
  • Link4 : gfg_example4.csv

Example 1: Reading numerical information from text file

Python3

import numpy equally np

filename = 'gfg_example1.txt'

data_collected = np.loadtxt(filename)

print (data_collected)

impress (

f 'Stored in : {type(data_collected)} and data blazon is : {data_collected.dtype}' )

Output :

Output of Case 1

Instance 2: Reading numerical data from CSV file.

Python3

import numpy every bit np

filename = 'gfg_example2.csv'

data_collected = np.loadtxt(filename, delimiter = ',' , dtype = int )

impress (data_collected)

impress (

f 'Stored in : {type(data_collected)} and data blazon is : {data_collected.dtype}' )

Output :

Output of Example 2

Instance 3: Reading from tsv file

Python3

import numpy as np

filename = 'gfg_example3.tsv'

data_collected = np.loadtxt(filename, delimiter = '\t' )

print (data_collected)

print (

f 'Stored in : {type(data_collected)} and data type is : {data_collected.dtype}' )

Output :

Output of Example three

Example 4: Select only particular rows and skip some rows

Python3

import numpy as np

filename = 'gfg_example4.csv'

data_collected = np.loadtxt(

filename, skiprows = 1 , usecols = [ 0 , 1 ], delimiter = ',' )

print (data_collected)

print (

f 'Stored in : {type(data_collected)} and data type is : {data_collected.dtype}' )

Output :

Output of Instance 4


How To Read Data From A File And Save It As An Array,

Source: https://www.geeksforgeeks.org/how-to-read-a-numerical-data-or-file-in-python-with-numpy/

Posted by: wagnergear1974.blogspot.com

0 Response to "How To Read Data From A File And Save It As An Array"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel